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ABSTRACT 

This document describes experimental guidelines governing the 
production of reliable software systems.  Both programming and man- 
agement guidelines are proposed. The programming guidelines are 
intended to enable programmers to cope with a complex system effec- 
tively. The management guidelines describe an organization of per- 
sonnel intended to enhance the effect of the programming guidelines. 
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PREFACE 

This report has been produced under the Highly Reliable Program- 
ming Task in support of Air Force Project 5550 of the Advanced Devel- 
opment Program.  The necessity for reliable software in computer- 
based Air Force systems such as AABNCP is easily recognized; current 
methods of system development have seldom resulted in software which 
is free of errors.  Therefore, the objectives of this task have been 
to determine which available techniques might facilitate production 
of reliable software, to demonstrate how these techniques can be 
applied to software development, and finally to recommend to the Air 
Force ways to realize the benefits of these techniques. 

The first step taken in this task was to perform a survey of the 
literature and an analysis of current approaches to the problem of 
software reliability.(l)  One of these approaches, called the "con- 
structive" approach, was selected as the most feasible at this time. 
This approach is concerned with a methodology for system development 
which seeks to eliminate the sources of errors by making a concern 
for reliability an integral part of the development process. 

This report represents the second step in meeting the objectives 
of the Highly Reliable Programming Task.  In order to demonstrate the 
effectiveness of the constructive approach, a set of guidelines has 
been developed.  These guidelines govern the application of a combina- 
tion of techniques which separately have been used to aid in the pro- 
duction of reliable software. 

The guidelines described here will be conscientiously applied to 
the construction of a small, but complex, file management system so 
that they may be evaluated and refined.  Ultimately the guidelines 
will be restated in a form suitable for use by the Air Force in con- 
trolling the development of software systems, either in-house or 
acquired from contractors, so that the resulting software will be 
reliable. 
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SECTION I 

INTRODUCTION 

OBJECTIVES 

The purpose of this paper Is to establish experimental guidelines 
governing the building of reliable software systems.  These guidelines 
will be tested by attempting to follow them when building an on-line 
interactive multi-user file management system later this year.  Through- 
out the building of the system, the success or failure of the guide- 
lines will be noted, hopefully leading to the establishment of a set 
of more useable guidelines as a result. 

Our primary objective is to learn how to build reliable software, 
containing no errors upon delivery.  It is customary to divide the 
building of a software system into three phases:  design, implementa- 
tion and testing. Design involves both making decisions about what 
precisely a system does and then planning an overall structure for 
the software which permits it to perform its tasks. This structure 
is traditionally represented by flowcharts.  Implementation consists 
of writing the programs which make up the software system; these pro- 
grams fit into the structure specified by the design.  Testing is 
debugging of the software; it is usually performed first on the indi- 
vidual programs and then on combinations of programs (system integra- 
tion) . 

In the title of this paper, only design and implementation are 
mentioned.  This is done purposefully to underline the approach of 
this project, which considers testing as an integral part of design 
and implementation.  The standard approach to building software sys- 
tems, involving extensive debugging, has not proved successful in 
practice.  As Dijkstra said, "Testing shows the presence, not the 
absence of bugs."'2' What is required is a methodology for designing 
and implementing systems which permits (informal) proofs of the cor- 
rectness of the software before testing begins.  These proofs will 
turn up relevant test cases.  Another requirement on the software is 
that there is a small number of such test cases; this is only 
possible if considerations about testing influenced design and imple- 
mentation.  If this is true, then it will be possible to exhaustively 
check every test case.  When this exhaustive testing is combined with 
the informal proofs, it is reasonable to expect software reliability 
after testing is complete. This expectation is borne out by certain 
experiments performed in the past.'3,4) 



In addition to producing reliable software, it is also necessary 
to produce readable software which is relatively easy to modify and 
maintain.  Systems of any size can always be expected to be subject 
to changes in requirements, resulting in recoding of parts of the 
system.  A reliable system which cannot adjust to such changes is 
therefore not satisfactory. 

DESCRIPTION OF PAPER 

We will consider building complex software systems.  A two-fold 
definition is offered for "complex." First, there are many system 
states in such a system, and it is difficult to organize the program 
logic to handle all states correctly; programming guidelines will be 
proposed whose purpose is to help programmers deal with this complexity 
effectively.  (In this paper, all people concerned with production of 
software, both in design and implementation, are called programmers.) 
Second, the efforts of many individuals must be coordinated in order 
to build the system; management guidelines will be proposed governing 
the organization of the programmers, the coordination of their efforts, 
the communication between them, and the scheduling of the project as 
a whole.  In addition, management guidelines provide support for pro- 
gramming guidelines.  It is generally accepted that the organizational 
structure of people imposes a structure on the system being built. ^-*' 
Since we want a certain system structure as established by the pro- 
gramming guidelines, we must therefore structure the people correctly 
in order to achieve this. 

The guidelines proposed in this paper are experimental, and it 
is too much to expect that they are complete or even correct.  It is 
fairly easy to look at a given system and say that it is poorly con- 
structed.  It is more difficult to say why a design is poor.  But it 
is extremely difficult to propose guidelines which will lead to the 
good design of a new system.  For this reason, an important part of 
the project will be the evaluation of the guidelines. 

The paper is organized as follows.  In the next section two 
techniques are described, one primarily intended for design and the 
other primarily for implementation; these techniques together form a 
framework within which the system will be built.  Section III contains 
a number of programming guidelines intended to help with the organi- 
zation of the software; thus, these guidelines are primarily of use 
in the design phase, but will also apply to implementation when deci- 
sions have to be made.  The final section examines the various stages 
of building systems, relates the stages to the programming guidelines 
and the organization of personnel, and establishes documentation pro- 
cedures which will help to evaluate the project when it is over. 



SECTION II 

BASIC TECHNIQUES 

As was stated previously, our fundamental concern is for produc- 
ing reliable software systems.  We will concentrate on two important 
aspects of the production problem. The first is the development of a 
system structure which copes with the inherent complexity of the sys- 
tem in an effective and understandable way; this will be done through 
the technique of modularity. Then, given the system structure, it is 
necessary to insure its clear and understandable representation in the 
system software; this will be accomplished through the technique of 
structured programming. 

MODULARITY 

To reiterate, a complex system is one in which there are so many 
system states that it is difficult to understand how to organize the 
program logic so that all states will be handled correctly.  The 
obvious technique to apply when confronting this type of situation 
is "divide and rule." This is an old idea in programming and is known 
as modularization.  Modularization consists of dividing a program 
into subprograms (modules) which can be compiled separately, but 
which have connections with other modules.  We will use the definition 
of Pamas:(6)  "The connections between modules are the assumptions 
which the modules make about each other." Modules have connections 
in control via their entry and exit points; connections in data, 
explicitly via their arguments and values, and implicitly through 
data referenced by more than one module; and connections in the ser- 
vices which the modules provide for one another. 

Traditionally, modularity was chosen as a technique for system 
production because it makes a large system more manageable.  It per- 
mits efficient use of personnel, since programmers can implement and 
test different modules in parallel.  Also, it permits a single func- 
tion to be performed by a single module and implemented and tested 
just once, thus eliminating some duplication of effort and also 
standardizing the way such functions are performed. 

The basic idea of modularity seems very good, but unfortunately 
it does not always work well in practice.  The trouble is that the 
division of a system into modules may introduce additional complexity. 
The complexity comes from two sources:  functional complexity and 
complexity in the connections between the modules.  Examples of such 
complexity are: 



(1) A module is made to do too many (related but different) 
functions, until its logic is completely obscured by the 
tests to distinguish among the different functions (func- 
tional complexity). 

(2) A common function is not identified early enough, with the 
result that it is distributed among many different modules, 
thus obscuring the logic of each affected module (functional 
complexity). 

(3) Modules interact on common data in unexpected ways (com- 
plexity in connections). 

The point is that if modularity is viewed only as an aid to 
management, then any ad hoc modularization of the system is acceptable. 
However, the success of modularity depends directly on how well modules 
are chosen.  We will accept modularization as the way of organizing 
the programming of complex software systems.  A major part of this 
paper will be concerned with the question of how good modularity can 
be achieved.  First, however, it is necessary to define what good 
modularity is.  This definition will be partially provided by defining 
modularity in terms of a new technique for organizing software:  levels 
of abstraction.'J' 

Levels of abstraction provide a conceptual framework for achieving 
a clear and logical design for a system.  The entire system is con- 
ceived as a hierarchy of levels, the lowest levels being those closest 
to the machine.  Each level supports an important abstraction; for 
example, one level might support segments (named virtual memories), 
while another (higher) level could support files which consist of 
several segments connected together.  An example of a file system 
design model based entirely on a hierarchy of levels can be found in 
Madnick and Alsop.''' 

There are two important rules governing levels of abstraction. 
The first concerns resources (I/O devices, data):  each level has 
resources which it owns exclusively and which other levels are not 
permitted to access.  The second involves the hierarchy:  lower levels 
are not aware of the existence of higher levels and therefore may not 
refer to them in any way.  Higher levels may appeal to the functions 
of lower levels to perform tasks; they may also appeal to them to 
obtain information contained in the resources of the lower level. 

Levels of abstraction differ from modules because a level con- 
sists of a group of related functions whereas a module is associated 
with only one function (at least externally).  Levels of abstraction 
differ from modularity as previously defined because they are 



accompanied by rules governing the connections between the levels. 
We will therefore change our definition of modularization as follows; 

Modularization is defined to be the division of the system 
into a hierarchy of levels of abstraction, each level con- 
sisting of one or more externally accessible functions 
which share common resources. These levels are connected 
to one another in very simple and well-defined ways.  Recall 
that connections exist both in control and in data.  Con- 
nections in control are limited as follows: 

(1) Each function has only one entry point and always 
exits to the place from which it was invoked. 

(2) The rule about hierarchy of levels is observed. 

Connections in data between two levels of abstraction are 
limited to the explicit arguments passed to a function and 
the values returned.  Implicit interaction on common data 
may only occur among functions in the same level of abstrac- 
tion. 

STRUCTURED PROGRAMMING 

Structured programming is a programming discipline which was 
introduced with reliability in mind.(^,8)  it is defined, and the 
rationale for it given, in Liskov and Towster^1) only a brief sum- 
mary is presented here.  One justification for structured programming 
is that the resulting programs are easier to understand and to read 
than ordinary programs; this ease is then linked to the correctness 
of code before testing, thus increasing the chances of a reliable 
system. 

There are three main rules which together define structured pro- 
gramming. The first defines the syntax of structured programs. A 
program may be thought of as made up of statements connected together 
by control structures.  In structured programs only the following con- 
trol structures are permitted:  concatenation, selection of the next 
statement based on the testing of a condition, and iteration. Con- 
nection of two statements by a goto is not permitted.  The statements 
themselves may be assignment statements or procedure calls. 

The second rule, concerning how structured programs should be 
written, is the most important.  It states that programs should be 
developed from the top down.  The highest level of a program describes 
the flow of control among major functional components of the program; 



names are introduced to represent these components. These names can 
be associated with code later; this code describes the flow of control 
among still lower level components, where again names are introduced 
to represent the components. The process stops when no undefined 
names remain. Each expansion of a name is called a module;-*- it is a 
goto-free program, having one entry point, and always exiting to the 
statement immediately following the one which refers to its name. 

The third rule limits the size of structured program modules. 
The success of structured programming is based in large part on the 
readability of the resulting code.  For this reason, modules are 
limited in size so that an entire module can be easily read and under- 
stood. A size of one computer printout page per module is suggested.(4) 

Structured Programs and Higher Level Languages 

A language which supports structured programming is a special 
kind of higher level language.  From the very start it was obvious 
that we wanted to write the software in a higher level language, 
since readability and understandability of software were primary 
project goals.  In addition, there is a general trend nowadays toward 
writing software, even for systems like operating systems, in a higher 
level language.t°)  The primary motivation is programmer productivity, 
which is considered more important than the efficiency of the code 
produced.  The problem of inefficient code is in any case being alle- 
viated by designing special languages for programming operating and 
similar systems.(10.11)  A language of this sort which also supports 
structured programming has been designed and implemented for this 
project. 

Structured Programming and Proofs of Correctness 

The following connection exists between structured programs and 
proofs of correctness.  Before code is written for a module, a spe- 
cification of the module exists which explains the input and output 
of the module and the function which it is supposed to perform.  A 
form for this specification will be given in Section IV. When the 
module is coded, it is expressed in terms of specifications of lower 
level modules.  The theorem to be proved is that the code of the 
module matches its specification; this proof will be given based on 

1 (4) Originally these expansions were called segments,   but "segment" 
now means "named virtual memory," so it seemed advisable to select 
a different name.  It is hoped that no confusion will result from 
the choice of "module," which is no longer being used in this paper 
to define modularity. 



axioms stating that lower level modules match their specifications. 
The proof should not be too difficult because the module itself is 
small and logically straightforward due to the omission of goto's. 

Structured Programs and Levels of Abstraction 

A level of abstraction is made up of functions (or procedures), 
some of which may be referenced by other levels of abstraction (the 
external functions) while others (the internal functions) are used 
only within the level to perform certain tasks common to all work 
being performed by the level. Associated with each such function 
will be a structured program module, and the name of the function 
will be the same as the name of the module.  In addition, however, 
modules are sometimes introduced in order to clarify the logic of a 
given function; thus, a function may be associated with more than one 
module. 

Structured Programming and System Design 

Structured programming is obviously applicable to system imple- 
mentation.  However, it is also a valuable aid for system design. 
Structured programs can replace flowcharts as a way of specifying 
what a program is supposed to do.  It is no more difficult to write 
a structured program than a flowchart, since both contain approximately 
the same level of detail.  The advantage of the structured program is 
that it is part of the final program; no translation is necessary 
(with the attendant possibility of introduction of errors).  In 
addition, the structured program is more rigorous than a flowchart. 
For one thing, it is written in a programming language and therefore 
the semantics are well defined.  For another, a flowchart only describes 
the flow of control among parts of a system, but a structured program 
defines the arguments and values of a referenced module.  If a change 
in level of abstraction occurs at that point, then the connection 
between the two modules is completely defined by the structured pro- 
gram. This should help to avoid interface errors usually uncovered 
at system integration. 

The way structured programs are written is very close to modu- 
larization as it is traditionally defined; in both cases the work to 
be performed is divided among lower level subprograms. This closeness 
is illustrated by calling these subprograms modules (this word is no 
longer being used for the definition of modularization).  This means 
that structured programming is a particularly good environment in 
which to perform modularization.  Structured programming does not 
explain how modules are to be grouped into levels of abstraction; 
this grouping occurs as a result of concepts about the system which 
are developed independently of the structured programs.  But structured 
programs do provide a good way of expressing the system as a program 
as it develops. 

7 



SECTION III 

PROGRAMMING GUIDELINES 

In the preceding section, modularization was redefined in terms 
of levels of abstraction. Within this framework, the success of 
modularization depends on how well the levels of abstraction are 
selected. We will now present a tentative definition of good modu- 
larization supporting the goal of software reliability. 

A good modularization satisfies the following requirements: 

(1) It satisfies the definition of modularization given in the 
preceding section and summarized here for convenience.  The 
system is divided into a hierarchy of levels of abstraction, 
each level consisting of one or more externally accessible 
functions which share common resources.  The connections 
in control among the levels are limited by the rule about 
hierarchy of levels.  Connections in data are limited to 
the explicit arguments passed to the functions in the 
levels and the values returned. 

(2) The combined activity of the functions in a level of abstrac- 
tion supports a single abstraction and nothing more.  For 
example, a level of abstraction supporting files composed 
of many virtual memories should not contain any code sup- 
porting the existence of the virtual memories.  The result 
of this restriction is that each level is substantially 
less complex than the system as a whole. 

(3) The system structure, which is defined by the way control 
passes among the functions of the levels of abstraction, 
is logically clear and understandable and is expressed by 
a structured program. 

A system modularization satisfying the above requirements is compatible 
with the goal of software reliability.  Since the system structure is 
expressed as a structured program, it should be possible to prove that 
it satisfies the system specifications, assuming that the structured 
programs which will eventually support the functions of the levels of 
abstraction satisfy their specifications.  In addition, it is reason- 
able to expect that exhaustive testing of all relevant test cases will 
be possible.  Exhaustive testing of the whole system means that each 
level must be exhaustively tested, and all combinations of levels must 
be exhaustively tested.  Exhaustive testing of a single level involves 
both testing based on input parameters to the functions in the level 
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and testing based on intermediate values of state variables of the 
level.  When this testing is complete, it is no longer necessary to 
worry about the state variables because of requirement 1. Thus, the 
testing of combinations of levels is limited to testing the input 
and output parameters of the functions in the levels.  In addition, 
requirement 2 says that levels are logically independent of one 
another; this means that it is not necessary when combining levels 
to test combinations of the relevant test cases for each level. Thus, 
the number of relevant test cases for two levels equals the sum of 
the relevant test cases for each level, not the product. 

GUIDELINES FOR SELECTING LEVELS OF ABSTRACTION 

Now that we have a definition of good modularization, the next 
question is how can a system modularization satisfying this definition 
be achieved.  The traditional technique for modularization is to 
analyze the execution time flow of the system and organize the system 
structure around each major sequential task.  This technique leads to 
a structure which has very simple connections in control, but the con- 
nections in data tend to be complex (for examples see Pamas(l2) and 
Cohen(13)),  The structure therefore violates requirement 1; it is 
likely to violate requirement 2 also since there is no reason (in 
general) to assume any correspondence between the sequential ordering 
of events and the independence of the events. 

If the execution flow technique is discarded, however, we are 
left with almost nothing concrete to help us make decisions about how 
to organize the system structure. The guidelines presented here are 
intended to rectify this situation. These guidelines tend to overlap, 
and when designing a system, the choice of a particular level of 
abstraction will generally be based on several of the guidelines. 
Following the guidelines, an example of the selection of a particular 
level of abstraction within the Venus system(l4) is presented to 
illustrate the application of several of the principles; an under- 
standing of Venus is not necessary for understanding the example. 

Useful Abstractions 

The most important reason for introducing a level of abstraction 
is as support for a useful abstraction.  Abstraction is a very valu- 
able aid to ordering complexity. Abstractions are introduced in 
order to make what the system is doing clearer and more understandable; 
an abstraction is a conceptual simplification because it expresses 
what is being done without specifying how it is done. Whenever a 
useful abstraction is identified, a level will be introduced to sup- 
port it.  Some abstractions express system features useful to the users 



of the system, while others are primarily intended to aid the system 
designers, and the system users may never be aware of them.  Examples 
of useful abstractions are:  spooling of a shared device such as a 
card reader or printer, processes (see page 12)» or virtual memories. 

The following types of useful abstractions are to be expected 
when designing a system: 

Abstractions of Resources 

Every hardware resource available on the system will be repre- 
sented by an abstraction having useful characteristics for the user. 
This abstraction will be supported by a level of abstraction whose 
functions map the characteristics of the abstract resource into the 
characteristics of the real underlying resource or resources.  (This 
mapping may actually occur over several levels of abstractions.)  For 
example, in an interactive system "abstract teletypes" with end of 
message and erasing conventions are to be expected. 

Abstract Characteristics of Data 

In most systems the users are interested in the structure of data 
rather than (or in addition to) storage of data.  The system can 
satisfy this interest by the inclusion of a level of abstraction which 
supports the chosen data structure; functions of the level will map 
the structure into the way data is actually represented by the machine 
(again this may be accomplished by several levels).  For example, in 
a file management system such a structure might be an indexed sequen- 
tial access method. 

Simplification of Levels of Abstraction 

According to requirement 2, the functions comprising a level of 
abstraction support only one abstraction and nothing more.  Sometimes 
it is difficult to see when this restriction is being violated.  The 
two following guidelines are intended to help the system designer 
satisfy requirement 2: 

Simplification Via Recognition of Common Functions 

One candidate for a level of abstraction is a function (or group 
of functions) which is obviously going to be generally useful.  Sepa- 
rating such groups is a common technique in system implementation and 
is also useful for error avoidance, minimization of work, and stand- 
arization.  The existence of such a group simplifies other levels, 
which need only appeal to the functions of the lower level rather 
than perform the tasks themselves. 
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Sometimes a level of abstraction already exists which supports 
tasks very similar to some work which must be performed. When this 
is true, every effort should be made to use the functions of this 
other (lower) level, provided that this use does not force additional 
complexity on those functions. 

Simplification Via Limiting Information 

Another way of simplifying levels of abstraction is to limit 
the amount of information which they need to know (or even have 
access to). An example of such information is the formatting of data 
which is peripheral to the true function of the level (the data would 
be a resource of the level).  The level may require the information 
embedded in the data but need not know how it is derived from the 
data (or possibly even where it is).  This knowledge can be success- 
fully hidden within a lower level of abstraction whose functions will 
provide requested information to higher levels when called; note that 
the data in question becomes a resource of the lower level. 

System Maintenance and Modification 

Producing a system which is easily modified and maintained is 
one of the primary goals of the project.  This goal can be aided by 
separating into independent levels of abstraction functions which 
are performing a task whose definition is likely to change in the 
future.  For example, if a level is paging data between core and some 
backup storage, it may be wise to isolate as an independent level of 
abstraction those functions which actually know what the backup stor- 
age device is.  Then if a new device is added to the system (or a 
current device is removed), only the small independent level of 
abstraction need be changed; the larger level will already have been 
isolated from such changes by the requirement about connections 
between levels. 

A Special Guideline for Asynchronous Systems 

Not all complex systems need be asynchronous; however, systems 
which must deal with asynchronous events (for example, input/output 
interrupts) will necessarily be asynchronous.  In addition, systems 
which need not be asynchronous are sometimes built to be asynchronous 
for reasons of efficiency (two or more events can then occur simul- 
taneously).  The file management system to be built for this project 
will be asynchronous.  A special guideline is presented for simplify- 
ing the design of asynchronous systems. 

11 



A Model for Asynchronous Systems 

(3,14,15,16)     , £J Recent work in operating systems has defined a model 
for asynchronous systems.  This model both simplifies the conceptual 
difficulties of asynchronous systems and also reduces the amount of 
code required.  It is based upon the concept of the work of the sys- 
tem being performed by a community of cooperating processes.  The pro- 
cesses communicate and synchronize with one another by means of primi- 
tives provided by a very low level of abstraction which also serves 
to establish the existence of the processes; this level defines the 
system nucleus.  P and V operations on semaphores are an example of 
such primitives; more useful communication devices, such as queues 
or mailboxes, can be provided at a slightly higher level. 

The advantage of the communicating process approach is that it 
allows the many system tasks which are logically asynchronous to be 
handled in a physically asynchronous manner. This leads to clarity 
and reduced complexity in the design, which in turn reduces the com- 
plexity required of the implementation. Since complexity is a pri- 
mary obstacle to building correct systems, reduction of complexity 
cannot help but aid the goal of system reliability. 

Cooperating processes are related to levels of abstraction in 
the following way.  Whenever control passes from one level of abstrac- 
tion to another, this may occur either by calling a procedure or by 
synchronizing with another process.  Within a level, however, probably 
only calls are legal, for the reason that the decision to change pro- 
cesses is a major one and probably coincides with a change in level. 

The Guideline 

The previous model should be used when designing the file man- 
agement system. 

An Example from Venus 

The following example from Venus is presented because it illus- 
trates many of the points made about selection, implementation, and 
use of levels of abstraction. The concept to be discussed is that 
of external segment name, referred to as ESN from now on. 

The concept of ESN was introduced as an abstraction primarily 
for the benefit of users of the system.  The important point is that 
a segment (named virtual memory) exists both conceptually (as a place 
where a programmer thinks of information as being stored) and in 
reality (the encoding of that information in the computer).  The 
reality of a segment is supported by an internal segment name (ISN) 
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which is not very convenient for a programmer to use or remember. 
Therefore, the symbolic ESN was introduced. 

As soon as the concept of ESN was imagined, the existence of a 
level of abstraction supporting this concept was implied. This level 
owned a nebulous data resource, a dictionary, which contained infor- 
mation about the mappings between ESNs and ISNs.  The formatting of 
this data was hidden information as far as the rest of the system was 
concerned.  In fact, decisions about the dictionary format and about 
the algorithms used to search a dictionary could safely be delayed 
until much later in the design process. A collective name, the dic- 
tionary functions, was given to the functions making up this level 
of abstraction. 

As soon as the ESN level existed, it was necessary to define 
the interface presented by this level to the rest of the system 
(using a structured programming technique for design, a level would 
probably begin to exist when the first function within this level 
was specified). Obvious items of interest are ESNs and ISNs; the 
format of ISNs was already determined, but it was necessary to decide 
about the format of ESN.  The most general format would be a count 
of the number of characters in the ESN followed by the ESN itself; 
for efficiency, however, a fixed format of six characters was selected. 

At this point a generalization of the concept of ESN occurred, 
because it was recognized that a two-part ESN would be more useful 
than a single symbolic ESN.  The first part of the ESN is the symbolic 
name of the dictionary which should be used to make the mapping; the 
second part is the symbolic name to be looked up in the dictionary. 
This concept was supported by the existence of a dictionary contain- 
ing the names of all dictionaries. A format had to be chosen for 
telling dictionary functions which dictionary to use; for reasons of 
efficiency, the ISN of the dictionary was chosen (thus avoiding 
repeated conversion of dictionary ESN into dictionary ISN). 

At this point we had the identification of a level of abstraction. 
We knew what type of function belonged in this level, what sort of 
interface it presented to the rest of the system, and what information 
was kept in dictionaries.  As the system design proceeded, new dic- 
tionary functions were specified as needed.  Two generalizations 
were realized later. The first was to add extra information to the 
dictionary; this was information which the system wanted on a segment 
basis, and the dictionaries were a handy place to store it.  The 
second was to make use of dictionary functions as a general mapping 
device; for example, dictionaries are used to hold information about 
the mapping of record names into tape locations, permitting simplifi- 
cation of the higher level. 
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In reality, as soon as dictionaries and dictionary functions 
were conceived, a core of dictionary functions were implemented and 
tested.  This is a common situation in building systems and did not 
cause any difficulty in this case.  For one thing, extra space was 
purposefully left in dictionary entries because we suspected we might 
want extra information there later although we did not then know what 
it was. The algorithm selected was straight serial search; the search 
was embedded in two internal dictionary functions (not available for 
calling from outside the level) so that the format of the dictionary 
may be changed and the search redefined with very little effect on 
the system or most of the dictionary functions.  This follows the 
guideline of modifiability. 
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SECTION IV 

GUIDELINES FOR BUILDING SYSTEMS 

This section describes the guidelines to be followed when build- 
ing the file management system.  The programming guidelines of Sec- 
tion III will be applied whenever decisions are being made. This 
section is concerned with giving motivations for decisions within the 
various stages of building a system.  In addition, management guide- 
lines are given governing the way that personnel will be used in 
each stage and also specifying administrative techniques for keeping 
track of the development of the system and the application, success 
or failure of the various guidelines. 

As was mentioned in the introduction, it is customary to divide 
the building of a system into three phases: design, implementation 
and testing.  In this section we will distinguish two phases:  a 
design phase, and an implementation and testing phase.  This division 
is based on the organization of personnel: one organization is 
required for the design phase, and another is used for both imple- 
mentation and testing.  Personnel are organized into a structure which 
will hopefully permit global design considerations to control local 
decisions and which will encourage informal proofs of correctness, 
thus enhancing the chances for a reliable system. 

The design phase consists of making global decisions which 
affect the system as a whole and representing these decisions in 
structured programs.  Thus design is concerned with identification of 
levels of abstraction and the connections between them.  Implementa- 
tion includes making local decisions within a level of abstraction 
and representing them by structured programs; these decisions may 
even involve the introduction of new levels, which will, however, be 
completely hidden from the rest of the system by the level being 
implemented.  Thus implementation includes making design decisions; 
however, fewer global considerations will be required, which means 
the decisions are not as difficult to make. 

In the course of building a system, a point is reached when the 
design is considered to be complete; an attempt will be made to cap- 
ture the characteristics of the system at that time.  This distinction 
is important for determining what constraints to put on subcontractors 
and should also be useful for analyzing the progress of software being 
produced in-house. 
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THE DESIGN PHASE 

The design phase is the most difficult part of building a system 
because it is at this point that the full inherent complexity of the 
system is encountered.  It is also the most critical phase, because 
all important (i.e., global) decisions are made at this time and a 
general outline of the way in which the implementation should proceed 
is given.  If the design is bad, then the problems encountered within 
implementation and testing are increased and hopes of obtaining a 
reliable system diminish.  It is during the design phase that the 
programming guidelines of Section III will be most relevant. 

So it is important in the design phase to achieve a "good" system 
design, satisfying the following working definition: 

(1) The system will satisfy its requirements. 

(2) The design produces a good system modularization as defined 
in Section III. 

Obviously this is a very vague definition; if this project can produce 
a better one, that will be a substantial contribution. 

When system design begins, descriptions of the services which 
the system is supposed to provide are given.  An important part of 
system design is to turn these descriptions into precise specifications 
which will support the building of the system.  Care must be taken 
that none of the original intent of what the system was supposed to 
do is lost in this process. 

In addition to defining initial system specifications in light 
of expected user services (these are often referred to as top-level 
considerations), the initial design phase will also be concerned with 
the hardware on which the system is going to run (bottom-level con- 
siderations) . The concern with hardware may include the selection 
and purchase of the hardware; in any case a thorough understanding 
of the characteristics of the hardware will be necessary so that the 
evolving design will be consistent with these characteristics.  Thus 
the purpose of the design phase is to produce a system design satisfy- 
ing system specifications in a way which is compatible with the hard- 
ware on which the system is going to run.  The design will be exhibited 
as a system modularization as defined in Section II; the guidelines 
of Section III will be used to help identify what this modularization 
should be. 
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How to Proceed with the Design 

The very first phase of the design (phase 1) will be concerned 
with defining precise system specifications and analyzing the hard- 
ware requirements of these specifications.  The result of this phase 
will be a number of abstractions which represent the eventual system 
behavior in a very general way.  These abstractions imply the existence 
of levels of abstractions, but very little is known about the connec- 
tions between the levels, the flow of control among the levels, or 
how the work of the levels will be accomplished. Examples of such 
abstractions from Venus are: spooling of the card reader and printer; 
limited ownership of teletypes; existence of an executive to control 
jobs; existence of a loader to run jobs; etc.  Every important exter- 
nal characteristic of the system should be present as an abstraction 
at this stage.  Many of the abstractions have to do with the manage- 
ment of system resources; others have to do with services provided to 
the user.  One abstraction to be expected in an interactive system is 
that of a general command language; when this is missing, the result 
is likely to be a confusing duplication of commands meaning different 
things in different environments. 

The second (and final) phase of system design (phase 2) investi- 
gates the practicality of the abstractions proposed by phase 1 and 
establishes the data connections between the levels and the flow of 
control among the levels. This latter exercise establishes the place- 
ment of the various levels in the hierarchy.  The second phase occurs 
concurrently with the first; as abstractions are proposed, their 
utility and practicality are immediately investigated.  A level has 
been adequately investigated when its connections with the rest of 
the system are known and when the designers are confident that imple- 
mentation of the abstraction is practical. Varying depths of analysis 
are necessary; for example, the ESN level of abstraction requires 
almost no analysis, while spooling requires much analysis with the 
resulting identification of several internal levels of abstraction. 

Design of an Asynchronous System 

The design of an asynchronous system should be based on the model 
described in Section III.  This means that the functions performed by 
the system nucleus as well as the meaning of such concepts as "process" 
should be identified early in the design phase since they represent a 
basis upon which the whole system design will rest.  At this point, 
it is necessary to define the primitives to be used by system processes 
to synchronize with each other and to share system resources (these 
primitives need not be made available to the users of the system). 
These primitives may be supported directly by the system nucleus, or 
they may be supported by a very low level of abstraction using primi- 
tives of the nucleus. 
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Special Problems Which Must Be Solved During the Design 

A few difficult problems which must be solved during the design 
phase are enumerated here.  It is not clear that solutions to some 
of these problems fit into levels of abstraction or are handled well 
by structured programs. 

1) System startup and shutdown.  One problem of system startup 
is the initialization of the resources of the various levels 
of abstraction.  This is best solved by including in each 
level of abstraction a special function whose job is to pro- 
vide initialization for that level.  A similar function may 
be required to shut down the level. 

2) Error Protection.  The system must be protected from the 
effects of user errors.  A partial solution to this problem 
is to localize the effect of errors as much as possible; 
this is also helpful to the user for debugging his program. 
System errors should also be localized if possible, and 
error handling by the levels of abstraction is an important 
part of the design of the system. 

3) Error Recovery.  This is a very difficult problem.  Solu- 
tions are based on redundancy of information and protection 
of critical data by frequent snapshots.  Information must be 
kept about ownership of resources if "warm" starts are 
desired. 

4) Efficiency.  There are many types of efficiency, and there 
are often tradeoffs between the different types. We are con- 
sidering efficiency of performance here. A system often has 
performance criteria to meet, and it is necessary to evaluate 
a given system structure in depth to be sure it will support 
these criteria.  In general, however, system efficiency is 
very difficult to define during the design phase (especially 
in an asynchronous system) because the tradeoffs are not yet 
clear, and the designers should beware of spending too much 
time in optimizing any one part of the system.  A better 
approach is to make the system as modifiable as possible, 
intending to tune it after it is built. 

5) Instrumentation.  It is only possible to tune the system 
if its behavior can be measured.  As the system design evolves, 
some attention should be paid to the question of what types 
of measurements are required.  Most important is the require- 
ment for the existence of a very low level of abstraction 
(possibly supported by hardware) which permits measurement 
of the behavior of the system without changing that behavior 
significantly or at all. 
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6) Debugging Aids. An interactive system must provide inter- 
active debugging aids for its users. It is not clear where 
such aids fit in in the hierarchy of levels. 

7) Sharing of resources among the users. The system must be 
designed to insure that the available resources (including 
data) are shared among the users in a deadlock-free manner. 

8) Sharing of data resources within the system.  The system 
may share data differently from the users for reasons of 
efficiency.  Again care must be taken to avoid deadlock; 
ownership of only one resource at a time or some ordering 
on the way ownership can be obtained are both satisfactory 
solutions. 

9) Synchronization.  The synchronization of the processes 
making up the system must occur in the correct order. 

Structured Programming 

It is not clear exactly how early structured programming of the 
system should begin.  Obviously, whenever the urge is felt to draw 
a flowchart, a structured program should be written instead.  Struc- 
tured programs connecting all the levels of abstraction together will 
be expected by the end of the design phase.  The best rule is probably 
to keep trying to write structured programs; failure will indicate 
that system abstractions are not yet sufficiently understood and per- 
haps the effort will shed some light on where more effort is needed. 

Specifications of Levels and Functions 

As the structured programs are written, names are introduced to 
represent lower level modules. Often these names will stand for func- 
tions of lower levels of abstraction.  In this way levels of abstrac- 
tion come into existence and are linked to existing levels.  As the 
names are introduced, specifications should be given describing what 
the proposed module should do. 

The concept of system reliability as discussed in this paper is 
based on informal proofs of correctness that code matches specifica- 
tions.  It is important, therefore, that specifications be complete 
and understandable.  We discuss here the information to be contained 
in such specifications.  Specifications will be given for both levels 
of abstraction and for the functions within the levels; in this way 
the grouping of functions into levels is emphasized.  Not all the 
information discussed below will be known in the design phase; much 
information will be added during implementation (including the addi- 
tion of many new functions and possibly even new levels of abstraction). 
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The following information should be contained in the specifica- 
tion of a level of abstraction: 

1) the name of the level; 

2) a description of the abstraction which it supports; 

3) a list of the hardware resources owned by the level, if any; 

4) a list of the data resources owned by the level (this includes 
the data holding information about the state of the level); 

5) information about the placement of the level within the hier- 
archy of levels and whether the level occupies its own process; 

6) a list of the functions of the level which are externally 
accessible; 

7) a list of the functions of the level which are internally 
accessible (probably not known until implementation). 

The following information should be contained in the specifica- 
tion of a function: 

1) the name of the function; 

2) the name of the level of abstraction to which the function 
belongs and whether the function is external or internal; 

3) a description of every argument passed to the function and 
every value returned.  In each case, the legal bounds on the 
arguments and values should be carefully delineated. 

4) a description of what the function does (not how it works) 
based on its arguments and values, including the handling 
of errors; 

5) the expectations of the function about the state of the 
resources of the level when it is entered and its effect on 
that state, including error handling (probably not known until 
implementation). 

End of the Design Phase 

The design will be considered finished when the following criteria 
are satisfied: 
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1. All major levels of abstraction have been identified, the 
system resources have been distributed among them, and their 
positions in the hierarchy established.  It is known how the 
levels are distributed among the processes. 

2. The system exists as a structured program, showing how the 
flow of control passes among the levels of abstraction.  The 
structured program consists of several modules, but no module 
is likely to be completely defined (in the sense of being 
ready to execute).  Specifications exist for all levels and 
functions. The interfaces between the levels have been 
defined, and the relevant test cases for each level have 
been identified. 

3. Sufficient information is available so that a skeleton of a 
user's guide to the system could be written.  Many details 
of the guide would be filled in later, but new sections 
should not be needed. 

Organization of Personnel 

The design phase is accomplished by the design team, which con- 
tains everyone connected with the design in some capacity.  Within 
this team is a very small design team core which has the responsibility 
for producing the design.  Members of the core must have a global 
knowledge of the system and will use this knowledge first to generate 
the abstractions of phase 1 of the design and then to decide between 
alternative solutions produced through phase 2 analysis.  The core 
should contain at least two members, so that global system considera- 
tions can be discussed intelligently and thus provide a check on the 
correctness of the developing design. However, the core should be 
small to avoid wasted time and energy.  One member of the core will 
be designated the project leader (in reality, the responsibilities 
of the leader may be distributed among members of the core). 

The team core is first of all responsible for suggesting the 
abstractions of phase 1 of the design, although suggestions of mem- 
bers of the design team will certainly be welcome. The core will 
also decide what type of phase 2 analysis these abstractions require 
and will direct that this analysis be carried out by selected members 
of the design team (including core members).  Examples of types of 
analysis range from asking a team member or members to develop a 
solution to support an abstraction in order to determine whether 
implementation is practical, to asking them to examine several alter- 
native methods of accomplishing an abstraction and then to present 
the strengths and weaknesses of the alternatives.  Finally, the core 
is responsible for writing the structured program or programs which 
tie the levels of abstraction together. 
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Each member of the design team is responsible for performing 
phase 2 analysis as directed by the core.  At the beginning of the 
design he may have as much knowledge about the global requirements 
of the system as members of the core, but as the design progresses, 
this will probably not be true as more and more of his time is spent 
in performing detailed analysis of a part of the design. Therefore, 
he must expect to present a justification for his decisions to the 
design core, who will evaluate them with respect to global system 
considerations.  Sometimes his decisions will conflict with these 
considerations (although the core should explain relevant considera- 
tions to him in advance to avoid this as much as possible).  In this 
case his work will have to be redone.  If his analysis has gone very 
deep, considerable effort will be wasted.  For this reason, the core 
will try to specify a depth of analysis in advance, and the team mem- 
ber must resist the temptation to exceed this depth.  A depth of ana- 
lysis such that design decisions are being made based on earlier 
decisions which have not been approved is probably too deep. 

Design Meetings and Project Documentation 

There will be frequent meetings during the design phase.  These 
meetings will always be attended by members of the design team core; 
some members of the design team may also attend.  In the early stages 
of the design these meetings are likely to be very informal as abstrac- 
tions are proposed, decisions about hardware are made, certain abstrac- 
tions are selected for investigation, and representation of the system 
as a structured program is attempted.  Later in the design the meetings 
should become more orderly (as the design itself becomes better defined); 
meetings will consist of presentations of phase 2 analysis followed by 
design decisions or requests for more analysis. 

In addition to team members, meetings will always be attended by 
a secretary.  An important responsibility of the project leader is to 
keep a history of the project in a design notebook; one facet of that 
history will be a record of all design meetings.  The secretary's job 
will be to help as much as possible with the preparation of the note- 
book.  The notebook should contain a brief but lucid history of the 
project; for this reason, verbatim meeting notes may not be desirable. 
Instead a brief description of a problem under discussion should be 
dictated to the secretary; such dictations will occur throughout the 
meetings.  The notebook should include information about the basis for 
every design decision, together with alternative solutions rejected 
and why.  In addition to records of design meetings, the design note- 
book should contain a record of any other significant development; 
for example, descriptions of spontaneous discussions and whatever 
else the project leader considers significant. 
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It is very likely that as the design continues inadequacies in 
the guidelines will be detected.  Notes of these inadequacies, together 
with any changes which seem reasonable, should be entered in the guide- 
line notebook.  The team leader has the responsibility not only to 
make sure that these entries are made but also to examine current pro- 
cedures in order to detect inadequacies. 

IMPLEMENTATION AND TESTING 

Our guidelines for implementation and testing will be based to 
a large extent on the work of Harlan Mills.W  These techniques have 
already been partially verified by work performed at MITRE in the 
building of the SPIL compiler. 

Mills's techniques for implementation and testing were defined 
with reliability in mind.  Implementation is carried out from the 
top down, using structured programs.  Thus, modules are specified 
and the interfaces between modules defined before the code supporting 
the modules is written.  In addition, the modules are structured in 
such a way that the flow of control is emphasized, and modules are 
limited in size to less than one page.  The result is that the pro- 
grams are very readable.  This readability is then exploited by 
requiring that modules be read by someone other than the programmer; 
this technique is bound to uncover many errors. 

Testing does not begin until an entire subsystem has been coded. 
The subsystem is tested within the framework of the entire system. 
This means that it is not necessary to write testing programs which 
drive the various modules; on the other hand, it may be necessary to 
write program stubs to stand for parts of the system which are not 
yet defined.  One advantage of this approach is that the central logic 
of the system is tested the most, since it is run every time a new 
subsystem is tested. The primary advantage, however, is that this 
technique eliminates system integration problems almost entirely. 
When a newly coded subsystem is tested, it must be integrated with 
all the parts of the system which are already defined; thus, each 
part is integrated only once. 

We will modify Mills's techniques in a few significant ways.  In 
the first place, we will be working within a hierarchy of levels of 
abstraction.  Thus, we will talk about implementation of levels rather 
than of subsystems.  However, testing of levels will occur (as much 
as possible) within the framework of the entire system as defined by 
Mills. 
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In addition, we will not limit ourselves to a strict top-down 
implementation and testing, because this is not practical in the 
production of large systems, which must generally be completed within 
a certain time period.  In order to satisfy time constraints, it is 
often necessary to implement parts of the system in parallel, and we 
intend to attempt this in order to see if it is compatible with 
reliability. Even without parallel implementation, it is not clear 
that top-down implementation is always the best; for example, it 
might benefit production if certain low levels of abstraction, which 
are well-defined and widely used, were implemented and tested first. 
Therefore, we will make decisions about the order of implementation 
and testing based on tradeoffs between practicality and reliability. 

Design Within Implementation 

It must be recognized that many design decisions will still 
remain when implementation begins.  Also the work that the level per- 
forms may still be very complex, requiring further modularization. 
The person performing the design should rely on the programming guide- 
lines to help him make decisions.  He must understand where the level 
fits in the hierarchy and what services are performed for it by 
lower levels.  Care must be taken that the resulting design makes use 
of these services and that it does not violate the global considera- 
tions of the system (management guidelines will be set up to insure 
this). 

Order of Implementation 

Implementation will be carried out on an entire level of abstrac- 
tion at a time.  Ordinarily implementation will not begin until the 
design phase is over; however, for certain particularly well-defined 
levels, it may be practical to begin implementation before this (as, 
for example, with the dictionary functions in Venus). The danger in 
early implementation is that changes in the functional specifications 
may be made as the design progresses, thus invalidating the implemen- 
tation, so the decision to implement early should be made very cau- 
tiously.  Within a level, implementation should be entirely top-down, 
following the rules governing structured programming. 

When the design is complete, an order of implementation of the 
levels must be selected.  Generally, higher levels should be imple- 
mented first.  For one thing, certain design decisions may still 
remain which will have to be made as the implementation progresses; 
it is better if these decisions are made during implementation of 
high levels of abstraction because then it is easier to accommodate 
global considerations.  The exceptions to this order are low levels 
which are essentially independent of most of the design and which 
provide widespread support for higher levels.  It does not matter 
when such levels are implemented, but they should probably be tested 
very early in order to minimize the testing effort. 
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The order of implementation suggested here is neither top-down 
nor bottom-up, but rather a combination of both.  Implementation 
should be bottom-up when it is obvious that this is the right way to 
proceed; however, when there is a choice, top-down (highest levels 
first) implementation should be the rule. This is different from the 
usual order of implementation which is generally always bottom-up. 
Simultaneous implementation is possible for levels which are indepen- 
dent of one another (the design decisions required do not depend on 
one another). 

Specifications 

New information will become available as implementation progresses. 
This information should be added to the specifications which were 
started during the design phase (see previous section); specifications 
should also be given for all new levels and functions defined during 
implementation. 

Order of Testing 

Testing will occur on entire levels of abstraction at a time 
and will not begin until the entire level has been implemented.  The 
order of testing need not be the same as the order of implementation, 
but generally the same order will be a good idea.  This means that 
with the exception of certain low levels, testing will occur on 
higher levels before lower levels.  Top-down testing will obtain the 
advantages discussed earlier in this section.  However, two questions 
immediately arise:  1) It is most important that all relevant test 
cases be tested; will this occur naturally in top-down testing? 
2) Top-down testing implies simulation of lower levels (rather than 
the standard simulation of higher levels); how much effort does this 
require? We hope to answer these questions while building the file 
management system. 

Organization of Personnel 

A hierarchical structuring of personnel seems reasonable for 
implementation and testing.  At the top is the project leader whose 
responsibility is to resolve conflicts between implementations of 
levels and global considerations of the system as a whole.  The proj- 
ect leader also decides when and in what order levels of abstraction 
should be implemented and tested.  The actual implementation and 
testing of a level of abstraction (or possibly several connected 
levels) is carried out by an implementation and testing team.  One 
member of the team is the team leader; this person is responsible 
for: 
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1) performing any design which may still be necessary.  This 
design must be cleared with the project leader who will 
evaluate it with respect to global requirements.  The design 
will be expressed in structured programs. 

2) assigning pieces of the level to team members for implementa- 
tion.  He should not do any further implementation himself. 

3) reading the structured programs produced by team members and 
satisfying himself that they are correct.  He may ask team 
members to justify their code to help in this task. 

A)  designing tests for the level of abstraction.  These tests 
must cover every relevant test case, as determined by the 
legal ranges of input and output values of procedures in the 
level.  In addition, internal logic must be tested, and the 
team leader may request the implementer to help him define 
these tests. 

Team members will implement procedures of the level as directed 
by the team leader.  As soon as a procedure has been implemented, it 
becomes public and is entered in a notebook accessible to everyone. 
It may be compiled and corrected, with the changes becoming public 
as they occur, but no testing may be performed.  If an implementer 
has questions, he may ask the team leader, or he may consult the pub- 
lic listings of other implemented procedures. 

Since we intend to implement some of the levels in parallel, 
more than one implementation and testing team will be active at once. 
It is likely that project members will serve on more than one team, 
and they may do so in different capacities.  In particular, the 
leader of one team could be an ordinary member of another team. 

The Programming Secretary 

In a system of any size there is a lot of work involved in simply 
getting new information to those who need it, keeping decks up to 
date, and so forth.  The requirement that code be public adds to this 
burden.  If programmers must perform these tasks, a considerable por- 
tion of their time is used in non-productive ways.  In addition, there 
is the danger that the work will not be done, and this work is essen- 
tial to the reliability of the system. Therefore, the project should 
have the services of a clerical person to do this work; we will call 
this person the programming secretary as Millst*i does.  The program- 
ming secretary will perform all clerical tasks associated with the 
project; this includes use of the computer to edit and compile pro- 
grams, but ability to program is not necessary.  Secretarial skills 
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are much more desirable. The programming secretary should work dir- 
ectly for the project leader and could also do the secretarial tasks 
discussed in the design phase; the work to be performed (in order of 
priority) is: 

(1) attend design meetings and update the design notebook and 
other project documentation as directed by the project 
leader; 

(2) perform programming secretary tasks; and 

(3) do other secretarial work on a low priority basis. 

Project Documentation 

The design notebook and guideline notebook started in the design 
stage should be continued in the implementation and testing stage. 
In addition, two new notebooks will be made; one containing a Test 
History, and one containing an Error History. 

Design Notebook 

This notebook contains a chronological history of the development 
of the system.  During the implementation and testing stage, the 
following information should be included in the design notebook: 

(1) notes of all meetings. Generally brief summaries of deci- 
sions rather than verbatim notes will be included.  Meetings 
will become less frequent as this stage progresses, but 
will still be called when design decisions need to be made. 
One reason for such decisions will be an analysis of design- 
within- implementation decisions with respect to global con- 
siderations.  Another, which will hopefully not occur, will 
be design errors discovered as implementation and testing 
proceeds. 

(2) Chronological information such as: 

(a) date implementation of a level began (including ana- 
lysis of why this particular order of implementation 
was chosen); 

(b) size of implementation and testing team; 

(c) date implementation was finished; 

(d) date testing began (and analysis of order); 
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(e)  date testing finished.  At this point some indication 
of the difficulty of generating the test environment 
should be included. 

Guideline Notebook 

This notebook should be continued as in the design phase.  An 
analysis of the success or failure of the guidelines will be an impor- 
tant part of the entries in the guideline notebook.  Information 
about the success or failure of the management policies should be 
included. 

Test History 

This notebook will include information about the running of tests 
for the various levels.  Its purpose is to make this information avail- 
able so that if the system is modified in the future, tests for unaf- 
fected levels can be rerun as insurance that the modifications did not 
harm them in any way. Entries will include:  an analysis of relevant 
test cases, input testing these cases (decks will also be saved), and 
a history of successful runs on these cases, with dumps of significant 
information. 

Error History 

Many of the management procedures described in this paper are 
aiming at the elimination of errors before testing begins.  Therefore, 
errors found during testing will be an indication of failure.  Such 
discoveries may be very serious, possibly indicating design errors; 
information about these errors (if any) will be entered in the design 
notebook.  All other errors are implementation errors (although such 
errors may also be serious in the sense that much recoding will be 
required). 

An entry should be made in the Error History notebook for each 
implementation error uncovered during testing.  This entry should tell: 

(1) name of level of abstraction being tested; 

(2) name of procedure in which error occurred; 

(3) an analysis of the error.  This analysis should be fairly 
specific; i.e., "logic error" is not enough information. 

(A)  it is possible that the error uncovered occurs in a different 
level of abstraction than the one being tested.  This other 
level will already have been tested and this would indicate 
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that some relevant test case had been ignored in those 
tests.  If this occurs, an analysis of the failure of the 
test should be included (of course, a new test should be 
added to the test history notebook as a result). 

Documentation of the System 

Two forms of documentation of a system are customary: user docu- 
mentation and system documentation. The user documentation describes 
the services provided by the system and tells the user how to make 
use of these services; it explains very little about how the services 
are provided.  An outline of this document should be available from 
the design phase; sections will be filled in as implementation pro- 
gresses.  New sections should not be needed, since these would indi- 
cate some aspect of the system not considered in the design.  If a 
new section is needed, an analysis of why it is needed should be 
entered in the design notebook. 

System documentation is intended for the systems programmer who 
is going to modify or maintain the system.  It must contain sufficient 
information to permit him to find the part of the system which con- 
cerns him, to understand that part within the framework of the system 
as a whole, and to understand the logic of the part itself. We are 
hoping that the structured programs together with the function and 
level specifications will constitute an adequate system documentation. 
When the system is complete, we will analyze the structured programs 
and specifications to see if they are in fact adequate, add any infor- 
mation which is lacking, and make an entry in the guideline notebook 
describing the additional information required. 
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